首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5712篇
  免费   583篇
  国内免费   301篇
  2024年   11篇
  2023年   111篇
  2022年   110篇
  2021年   189篇
  2020年   198篇
  2019年   233篇
  2018年   228篇
  2017年   192篇
  2016年   185篇
  2015年   211篇
  2014年   288篇
  2013年   511篇
  2012年   245篇
  2011年   245篇
  2010年   178篇
  2009年   247篇
  2008年   213篇
  2007年   277篇
  2006年   232篇
  2005年   225篇
  2004年   181篇
  2003年   207篇
  2002年   152篇
  2001年   124篇
  2000年   88篇
  1999年   101篇
  1998年   104篇
  1997年   98篇
  1996年   83篇
  1995年   87篇
  1994年   88篇
  1993年   84篇
  1992年   105篇
  1991年   104篇
  1990年   63篇
  1989年   41篇
  1988年   58篇
  1987年   32篇
  1986年   47篇
  1985年   79篇
  1984年   74篇
  1983年   51篇
  1982年   60篇
  1981年   46篇
  1980年   37篇
  1979年   20篇
  1978年   21篇
  1977年   7篇
  1976年   11篇
  1973年   3篇
排序方式: 共有6596条查询结果,搜索用时 125 毫秒
81.
The effect of denervation on the contractile activity of the saphenous artery in normotensive rats and rats with regional hypotension was studied. Hypotension was caused by partial occlusion of the abdominal aorta distally from the renal arteries, and then, in four weeks, to denervate the saphenous artery, a portion of the femoral nerve in one of the limbs was resected. In two more weeks, the contractile responses of ring preparations of the saphenous artery (after removal of the endothelium and block of neuronal uptake and β-adrenoreceptors) were investigated under isometric conditions. In normotensive rats, the denervation led to an increase in the vascular sensitivity to norepinephrine, phenylephrine, serotonin, and KCl. Similar changes in contraction were caused by chronic hypotension; however, rats with hypotension exhibited no additional denervation-induced increase in the vascular sensitivity. After treatment with glyoxylic acid, the fluorescence intensity of the vascular adrenergic fibers adapted to a reduced pressure was lower than that in the norm. It was assumed that the vascular hypersensitivity in hypotension is caused by impairment of sympathetic innervation.  相似文献   
82.
研究了超高压处理对灵芝生长及其漆酶合成的影响,试验结果表明:灵芝致死率随处理压力的增大而增加,在150MPa下处理30min获得了一株生物量和漆酶产量都大幅增加的菌株G1502,其最大生物量及酶活分别比出发菌株提高了19.34%和282.67%,发酵时间也缩短了1d。  相似文献   
83.
The ruthenium(II) hexaaqua complex [Ru(H2O)6]2+ reacts with dihydrogen under pressure to give the η2-dihydrogen ruthenium(II) pentaaqua complex [Ru(H2)(H2O)5]2+.The complex was characterized by 1H, 2H and 17O NMR: δH = −7.65 ppm, JHD = 31.2 Hz, δO = −80.4 ppm (trans to H2) and δO = −177.4 ppm (cis to H2).The H-H distance in coordinated dihydrogen was estimated to 0.889 Å from JHD, which is close to the value obtained from DFT calculations (0.940 Å).Kinetic studies were performed by 1H and 2H NMR as well as by UV-Vis spectroscopy, yielding the complex formation rate and equilibrium constants: kf = (1.7 ± 0.2) × 10−3 kg mol−1 s−1 and Keq = 4.0 ± 0.5 mol kg−1.The complex formation rate with dihydrogen is close to values reported for other ligands and thus it is assumed that the reaction with dihydrogen follows the same mechanisn (Id).In deuterated water, one can observe that [Ru(H2)(H2O)5]2+ catalyses the hydrogen exchange between the solvent and the dissolved dihydrogen.A hydride is proposed as the intermediate for this exchange.Using isotope labeling, the rate constant for the hydrogen exchange on the η2-dihydrogen ligand was determined as k1 = (0.24 ± 0.04) × 10−3 s−1.The upper and lower limits of the pKa of the coordinated dihydrogen ligand have been estimated:3 < pKa < 14.  相似文献   
84.

Methods

Combining small-angle X-ray and neutron scattering measurements with inelastic neutron scattering experiments, we investigated the impact of high hydrostatic pressure on the structure and dynamics of β-lactoglobulin (βLG) in aqueous solution.

Background

βLG is a relatively small protein, which is predominantly dimeric in physiological conditions, but dissociates to monomer below about pH 3.

Results

High-pressure structural results show that the dimer–monomer equilibrium, as well as the protein–protein interactions, are only slightly perturbed by pressure, and βLG unfolding is observed above a threshold value of 3000 bar. In the same range of pressure, dynamical results put in evidence a slowing down of the protein dynamics in the picosecond timescale and a loss of rigidity of the βLG structure. This dynamical behavior can be related to the onset of unfolding processes, probably promoted from water penetration in the hydrophobic cavity.

General significance

Results suggest that density and compressibility of water molecules in contact with the protein are key parameters to regulate the protein flexibility.  相似文献   
85.
Stomata formed at high relative air humidity (RH) close less as leaf dries; an effect that varies depending on the genotype. We here quantified the contribution of each stomatal response characteristic to the higher water loss of high RH-grown plants, and assessed the relationship between response characteristics and intraspecific variation in stomatal size. Stomatal size (length multiplied by width), density and responsiveness to desiccation, as well as pore dimensions were analyzed in ten rose cultivars grown at moderate (60%) or high (85%) RH. Leaf morphological components and transpiration at growth conditions were also assessed. High growth RH resulted in thinner (11%) leaves with larger area. A strong positive genetic correlation of daytime and nighttime transpiration at either RH was observed. Stomatal size determined pore area (r = 0.7) and varied by a factor of two, as a result of proportional changes in length and width. Size and density of stomata were not related. Following desiccation, high RH resulted in a significantly lower (6–19%) decline of transpiration in three cultivars, whereas the relative water content (RWC) of high RH-expanded leaflets was lower (29–297%) in seven cultivars. The lower RWC of these leaflets was caused by (a) higher (33–72%) stable transpiration and/or (b) lower (12–143%) RWC at which this stable transpiration occurred, depending on the cultivar. Stomatal size was significantly correlated with both characteristics (r = 0.5 and -0.7, respectively). These results indicate that stomatal size explains much of the intraspecific variation in the regulation of transpiration upon water deprivation on rose.  相似文献   
86.
We describe a case of an acquired subglottic cyst presented with persistent stridor and voice hoarsening in a baby diagnosed with Williams–Beuren syndrome that was born premature and required intubation during neonatal period. We also comment on whether this is a coincidence or there can be an association between impaired elastogenesis, a feature of patients with the syndrome and the formation of a subglottic cyst.  相似文献   
87.
Turgor regulation is the process by which walled organisms alter their internal osmotic potential to adapt to osmotic changes in the environment. Apart from a few studies on freshwater oomycetes, the ability of stramenopiles to turgor regulate has not been investigated. In this study, turgor regulation and growth were compared in two species of the stramenopile alga Vaucheria, Vaucheria erythrospora isolated from an estuarine habitat, and Vaucheria repens isolated from a freshwater habitat. Species were identified using their rbcL sequences and respective morphologies. Using a single cell pressure probe to directly measure turgor in Vaucheria after hyperosmotic shock, V. erythrospora was found to recover turgor after a larger shock than V. repens. Threshold shock values for this ability were >0.5 MPa for V. erythrospora and <0.5 MPa for V. repens. Recovery was more rapid in V. erythrospora than V. repens after comparable shocks. Turgor recovery in V. erythrospora was inhibited by Gd3+ and TEA, suggesting a role for mechanosensitive channels, nonselective cation channels, and K+ channels in the process. Growth studies showed that V. erythrospora was able to grow over a wider range of NaCl concentrations. These responses may underlie the ability of V. erythrospora to survive in an estuarine habitat and restrict V. repens to freshwater. The fact that both species can turgor regulate may indicate a fundamental difference between members of the Stramenopila, as research to date on oomycetes suggests they are unable to turgor regulate.  相似文献   
88.

Aims

Acute ethanol intoxication (AEI) attenuates the arginine vasopressin (AVP) response to hemorrhage leading to impaired hemodynamic counter-regulation and accentuated hemodynamic stability. Previously we identified that the ethanol-induced impairment of circulating AVP concentrations in response to hemorrhage was the result of augmented central nitric oxide (NO) inhibition. The aim of the current study was to examine the mechanisms underlying ethanol-induced up-regulation of paraventricular nucleus (PVN) NO concentration. Angiotensin (ANG) (1-7) is an important mediator of NO production through activation of the Mas receptor. We hypothesized that Mas receptor inhibition would decrease central NO concentration and thus restore the rise in circulating AVP levels during hemorrhagic shock in AEI rats.

Main methods

Conscious male Sprague–Dawley rats (300–325 g) received a 15 h intra-gastric infusion of ethanol (2.5 g/kg + 300 mg/kg/h) or dextrose prior to a fixed-pressure (~ 40 mm Hg) 60 min hemorrhage. The Mas receptor antagonist A-779 was injected through an intracerebroventricular (ICV) cannula 15 min prior to hemorrhage.

Key findings

PVN NOS activity and NO were significantly higher in AEI compared to DEX-treated controls at the completion of hemorrhage. ICV A-779 administration decreased NOS activity and NO concentration, partially restoring the rise in circulating AVP level at completion of hemorrhage in AEI rats.

Significance

These results suggest that Mas receptor activation contributes to the NO-mediated inhibitory tone of AVP release in the ethanol-intoxicated hemorrhaged host.  相似文献   
89.
One of the events in the brain is an increasing cerebral blood flow during exercise. The tissue oxygen level may be increased because blood flow correlates with tissue oxygen level. However, it is little known whether the tissue oxygen pressure in hippocampal region (Hip-pO2) will be affected by exercise.  相似文献   
90.
Using different maximum-likelihood models of adaptive evolution, signatures of natural selective pressure, operating across the naphthalene family of dioxygenases, were examined. A lineage- and branch-site specific combined analysis revealed that purifying selection pressure dominated the evolutionary history of the enzyme family. Specifically, episodic positive Darwinian selection pressure, affecting only a few sites in a subset of lineages, was found to be responsible for the evolution of nitroarene dioxygenases (NArDO) from naphthalene dioxygenase (NDO). Site-specific analysis confirmed the absence of diversifying selection pressure at any particular site. Different sets of positively selected residues, obtained from branch-site specific analysis, were detected for the evolution of each NArDO. They were mainly located around the active site, the catalytic pocket and their adjacent regions, when mapped onto the 3D structure of the α-subunit of NDO. The present analysis enriches the current understanding of adaptive evolution and also broadens the scope for rational alteration of substrate specificity of enzyme by directed evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号